Espectro de variedades completas e não-compactas

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Santos, Fabiana Alves dos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/25815
Resumo: On this work we study the espectrum of Laplace-Beltrami operator on the warped Riemannian manifold Mⁿ = R Xᵣ Sⁿ⁻¹, whose warping function is smooth, positive, periodic, with period a and satisfies r₀ = min r(t) < √n - 1a/π. We show that spectrum there no eingevalue, is formed by a union of closed intervals, and, from the peridicity of r, using the classical Hill's Equations Theory, we conclude the existence of gaps.