Detalhes bibliográficos
Ano de defesa: |
2014 |
Autor(a) principal: |
Oliveira, Adriano Henrique Soares de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.repositorio.ufc.br/handle/riufc/10832
|
Resumo: |
The main goal of the present research is to establish the most appropriate conditions for studying the diffusivity of n-paraffins in the presence of a typical catalyst for Fischer-Tropsch synthesis (FTS), by using the chromatographic method ZLC (zero length column) and evaluating the repeatability and reproducibility of this method. It also aims to verify the catalyst performance in a fixed bed reactor, at a pilot-scale, and observe the effect of diffusion in the selectivity of high molar mass hydrocarbons. At first, the catalyst characterization was done with emphasis on the microscopy studies and textural analysis with N2. Regarding the n-alkanes diffusivity (n-C7, n-C9, n-C12, n-C16), two ZLC equipments were used, one at the Federal University of Ceara (UFC) and the another one at the University of Edinburgh, with different particle size samples. This work has also evaluated the influence of temperature, the purge gas flow rate, the catalyst mass and sorbate concentration in the purge gas. The reaction step was done at a Fisher-Tropsch pilot-scale unit at 20 bar, with 210°C and 230°C in different space velocities. As a result, the catalyst was presented as mesoporous, with small microporosity, and with active phase (Co) well distributed. Concerning the effective diffusivity, the most appropriate particle diameter to be used at the ZLC column, among the tested diameters, is 214 µm (dust form), with 5 mg of catalyst. Comparing the studies that were held at the two universities, it was noticed a good repeatability, however, the reproducibility was not satisfactory. It was observed a strong influence of the Henry´s constant at the results of effective diffusivity, for different catalyst sizes; however, no significant changes at the effective diffusivity were noted due to temperature variation and sorbate concentration. Regarding the reaction, the results indicated a strong effect of temperature at the CO conversion and at the C5+ selectivity. The diffusive mechanism is strongly affected by the catalyst surface effects. Based on this result, the raise of methane selectivity by increasing H2/CO ratio can explained. As final result, the ZLC is found as a suitable method for surface diffusion estimation using typical Fischer-Tropsch catalyst. |