Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Miranda, Kelvi Wilson Evaristo |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.repositorio.ufc.br/handle/riufc/18147
|
Resumo: |
Hydrocolloid and lipid-based films although they are considered technological innovations, have been studied since the mid-90s as potential replacements for synthetic polymers. This study aimed to develop composite films monolayer (Ms) and bilayers (Bs), with incorporation of acetic acid ester of monoglyceride (MGA) in different concentrations and rosemary essential oil peppermint, Lippia sidoides, for applicability in foods with high moisture content. In a previous experiment, it was determined the percentage of 40% (w/w) of plasticizer (D (-) sorbitol) for composite film formation (starch + lipid). Based on this film, it was prepared an experimental design, using plasticizer and various concentrations of AMS (0 to 20% w/w). The films were developed through casting with a thickness of 0.8 mm and dried at room temperature (25 °C ± 1 °C) 12-15 hours. Diffusion tests were performed on agar; physical properties (color, opacity, thickness, moisture and solubility); morphological (medium size, polydispersity – PdI – zeta potential, scanning electron microscopy - SEM, infrared spectroscopy and Fourier transform - IS-FT); barrier (permeability to water vapor - PWV); mechanical tests (tensile strength - TS, rupture elongation - RE - and elastic modulus - EM); termoanalítica (differential scanning calorimetry - DSC). It’s believed that the films have shown a bacteriostatic studied in microorganisms (S. aureus, L. monocytogenes, E. coli, P. aeruginosa and S. Typhimurium). Color analysis showed statistical significance (p<0.05) between mono and bilayer films. The opacity, showed variations from 214.74 to 323.12 A.nm (Ms) and 161.69 to 411.54 A.nm (Bs), except for the treatments with 10% and 15% lipid that doesn’t varied statistically (p<0.05) between Ms and Bs. The thicknesses resulted in asignificant difference (p<0.05) between treatments, ranging from 12% (Ms) and 48% (Bs). The films showed low solubility in aqueous media, with no separation of the layers. The Bs films presented stability of filmogenic solutions, combined with electrokinetic interactions of interaction between the layers, low solubility (16%), heat resistance, PdIbetween0.35 to 0.53; PVA around 2.232 g.mm/kPa.h.m², whose mechanical tests demonstrated tha the Bs films are hard and low elasticity with respect to Ms films, development perspective of a non-flexible packaging with excellent application in food with high moisture content, animal and/or plant origin. |