Detalhes bibliográficos
Ano de defesa: |
2008 |
Autor(a) principal: |
Albuquerque, Mônica Castelo Guimarães |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.repositorio.ufc.br/handle/riufc/2278
|
Resumo: |
Biodiesel is industrially produced by homogeneous transesterification of vegetable oils in the presence of basic species. However, removal of the base after reaction is a major problem, since purification of the ester phase is needed. In this study, different heterogeneous catalysts, based on calcium oxide (4-20%) supported on mesoporous SBA- 15 silica, and MgAl and MgCa oxides with different Mg/Ca and Mg/Al molar ratios (3- 24), have been synthesized, characterized and evaluated in transesterification reactions. Their textural and structural characterizations were carried out using XRD, XPS, FT-IR, SEM and N2 sorption at -196ºC. Their basicities were studied by CO2-TPD and isopropanol catalytic decomposition. Their catalytic activities was evaluated for the transesterification reaction of ethyl butyrate with methanol, and several reaction parameters were optimized. The most active catalysts were tested in biodiesel production from castor and sunflower oils. The sample with a 14 wt% of CaO in SBA-15 was the most active catalysts in the transesterification of ethyl butyrate with methanol at 60ºC and atmospheric pressure. For the MgAl and MgCa oxide catalysts, MgCa mixed oxides were more active than MgAl in the same system. The highest activity in biodiesel production was found for SBA15-14CaO as 65,7% and 95% for castor and sunflower oils after reacting for 1 and 5h, respectively. In the case of MgAl and MgCa oxides catalysts, sunflower oil conversion of 92% was achieved with methanol:oil molar ratio of 12, reaction temperature of 333 K and 2.5 wt% of MgCa3 catalyst. |