Detalhes bibliográficos
Ano de defesa: |
2014 |
Autor(a) principal: |
Araújo, Gilderlan Tavares de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.repositorio.ufc.br/handle/riufc/10859
|
Resumo: |
In this work, the performance of MIMO systems based on space-time coding is investigated through multilinear algebra, more specifically, by means of tensor decompositions, pulling away a bit from commonly used matrix models. We assume a system composed of P transmit and M receive antennas, consisting of a combination of a space-time block code (STBC) with a formatting filter. This filter is formed by a precoding matrix and a matrix that maps the precoded signal onto the transmit antennas. For the considered system, two contributions are presented to solve the problem of channel estimation. First, we propose a tensor-based channel estimation method for orthogonal STBCs in MIMO systems, by focusing on the specific case of the Alamouti scheme. We resort to a third order PARATUCK2 tensor model for the received signal, the third dimension of which is related to the presence of the formatting filter. By capitalizing on this tensor model, a channel estimation method based on the alternating least squares (ALS) algorithm is proposed. As a second contribution, a generalization of this method to an arbitrary nonorthogonal STBC is made, where a generalized structure is proposed for the formatting filter, introducing a fourth dimension into the tensor signal model. In this case, we make use of the PARATUCK(2-4) model followed by its reduction to a structured PARAFAC model, from which a closed-form solution to the channel estimation problem is established. The performance metrics considered for evaluating the proposed channel estimation method are: (I) the quality of the estimation in terms of NMSE and (II) the system reliability in terms of Bit Error Rate. |