Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Vasconcelos, David Caldas |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.repositorio.ufc.br/handle/riufc/21656
|
Resumo: |
Among the defense mechanisms employed by Burkholderia pseudomallei are the expression of efflux pumps such as BpeAB-OprB, AmrAB-OprA and BpeEF-OprC, which are responsible for resistance to aminoglycosides, macrolides, fluoroquinolones and sulfonamides. It is therefore necessary to find adjuvants able to minimize this resistance. In this context, the phenothiazines stand out for inhibiting those pumps. This study evaluated the in vitro inhibitory activity of promethazine alone or in combination with amoxicillin, amoxicillin/clavulanate, erythromycin, sulfamethoxazole/trimethoprim, ciprofloxacin or gentamicin against B. pseudomallei in planktonic and biofilm form. The structure of B. pseudomallei biofilm, with and without addition of promethazine, was also investigated. The sensitivity was evaluated by the broth microdilution test. The minimum inhibitory concentration (MIC) was 0.78 mg / mL and the minimum biofilm elimination concentration (MBEC) was 0.78 to 3.12 mg / mL for promethazine. Moreover, the association with promethazine significantly reduced the MIC values for erythromycin, trimethoprim / sulfamethoxazole, gentamicin and ciprofloxacin, whereas the MBEC values of all antibiotics tested significantly declined in combination with promethazine (p <0.05). Through electron and confocal microscopy, we found that promethazine was able to disrupt the biofilm matrix, possibly facilitating penetration of antibiotics. Therefore, this study demonstrates the inhibitory activity of promethazine against B. pseudomallei and its synergistic effect with traditional antibiotics against biofilms. |