Desigualdades de Hitchin-Thorpe e Miyaoka-Yau

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Rodrigues, Diego de Sousa
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/13243
Resumo: The aim of this work is to present a proof of the Hitchin-Thorpe and Miyaoka-Yau inequalities. First we provide an orthogonal decomposition for the curvature tensor, and then we show how the curvature operator can be defined from the curvature tensor. In order to fulfill the proposed objective, we prove the Gauss-Bonnet Theorem in dimension 4, to do this we use a result due Allendoerfer and we present an integral formula for the Euler characteristic computation on a Riemannian 4-manifold. Furthermore, we define the concept of signature in a Riemannian manifold e we exhibit an integral formula for the achievement of this object, for this we use the Hirzebruch Signature Theorem in di- mension 4 and the Chern-Weil Theory which provides us a connection between algebraic topology and differential geometry. Finally, we show how the earlier formulas can be used in the demonstration of the initial inequalities.