Sistema de refrigeração por tubos de Ranque-Hilsch com abastecimento de instalação de ar comprimido para alimentação com fonte solar fotovoltaica

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Silva, Oseas Carlos da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/11058
Resumo: The search for new refrigeration systems has become the target of various researchers. Their goal is to reduce the environment impacts resulting from the destruction of the ozone layer and the greenhouse effects that harm life in the planet Earth. Vapor-compression refrigeration systems represent a big fraction of the world energy consumption in houses and commercial stores (between 20 to 25%) and these systems usually run during the day, when the energy demand and the prices are higher. Refrigeration systems are necessary to today’s human activities, such as food and medicament conservation, air conditioning, etc. Photovoltaic systems are reliable energy sources and they can operate separately from the distribution energy grid. For these reasons, there is an increase in the use of refrigeration systems powered by solar photovoltaic panels in rural areas. Ranque-Hilsch tubes or vorticity tubes are commonly used for low cost local refrigeration, where compressed air is available. In this study, a vortex tube was designed, tested, and optimized to operate at pressure levels lower than the conventional values. The purpose is to allow its operation by a compressor system powered by solar photovoltaic panels and, therefore, its installation in locations where there is no electrical grid. In the experimental measurements, temperatures below the water freezing point were reached due to the combination of a number of tube parameters. These low temperature values support the use of the vortex tube in air cooling applications in a more efficient and rational energy use, particularly in remote locations, and can contribute to the solution of the energy demand and environmental problems.