Detalhes bibliográficos
Ano de defesa: |
2014 |
Autor(a) principal: |
Moreira, Leonardo Oliveira |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.repositorio.ufc.br/handle/riufc/18680
|
Resumo: |
Cloud computing is a well-established paradigm of computing resources usage, whereby hardware infrastructure, software and platforms for the development of new applications are offered as services available remotely and globally. Cloud computing users give up their own infrastructure to dispose of it through the services offered by cloud providers, to which they delegate aspects of Quality of Service (QoS) and assume costs proportional to the amount of resources they use, which is based on a payment model. These QoS guarantees are established between the service provider and the user, and are expressed through Service Level Agreements (SLA). This agreement consists of contracts that specify a level of quality that must be met, and penalties in case of failure. The majority of cloud applications are data-driven, and thus Database Management Systems (DBMSs) are potential candidates for cloud deployment. Cloud DBMS should treat a wide range of applications or tenants. Multi-tenant models have been used to consolidate multiple tenants within a single DBMS, favoring the efficient sharing of resources, and to manage a large number of tenants with irregular workload patterns. On the other hand, cloud providers must be able to reduce operational costs while keeping quality levels as agreed. To many applications, the longer time spent in processing requests is related to the DBMS runtime. Therefore, it becomes important to apply a quality model to obtain DBMS performance. Dynamic provisioning techniques are geared to treat irregular workloads so that SLA violations are avoided. Therefore, it is necessary to adopt a strategy to adjust the cloud at the time a behavior that may violate the SLA of a given tenant (database) is predicted. The allocation techniques are applied in order to utilize the resources of the environment to the dentriment of provisioning. Based on both the monitoring and the optimization models systems, the allocation techniques will decide the best place to assign a given tenant to. In order to efficiently perform the transfer of the tenant, minimal service interruption, Live Migration techniques are adopted. It is believed that the combination of these three techniques may contribute to the development of a robust QoS solution to cloud databases which minimizes SLA violations. Faced with these challenges, this thesis proposes an approach, called PMDB, to improve DBMS QoS in multi-tenant cloud. The approach aims to reduce the number of SLA violations and take advantage the resources that are available using techniques that perform workload prediction, allocation and migration of tenants when greater capacity resources are needed. An architecture was then proposed and a prototype implementing such techniques was developed, besides monitoring strategies and QoS oriented database applications in the cloud. Some performance oriented experiments were then specified to show the effectiveness of our approach. |