Síntese e Caracterização do Composto Heterobimetálico trans-[(SO3)(cyclam)Co-NCS-Ru(NH3)4(NCS)](BF4)

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Silva, Maria Aparecida Santiago da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/18523
Resumo: Trans-[Co(cyclam)(SO3)(NCS)]·4H2O, trans-[Ru(NH3)4(NCS)(SO4)], and trans-[(SO3)(cyclam)Co−NCS−Ru(NH3)4(NCS)](BF4) complexes, where cyclam = 1,4,8,11-tetraazacyclotetradecane, were synthesized and characterized by X-ray difraction, vibrational and electronic (ultraviolet, visible and near infrared) spectroscopies, and electrochemical techniques. The electronic communication between Co and Ru metal centers of the binuclear complex was evaluated by electrochemistry and electronic spectrocopy in the near infrared region. Crystals suitable for X-ray studies were only isolated for the trans-[Co(cyclam)(SO3)(NCS)]·4H2O complex. The obtained results indicate a monoclic structure with cyclam ligand at the equatorial plane and SO32− and NCS− moieties occupying the axial positions being coordinated through, respectively, sulfur and nitrogen atoms. This result is reinforced by the observation, in the vibrational spectrum, of bands typically assigned to the cyclam ligand in a trans configuration. The cyclic voltammograms obtained for this compound indicate as Electrochemical-Chemical-Electrochemical mechanism. In fact, the spectroelectrochemical experiments obtained at -0.80 V vs Ag/AgCl show that this compound, upon reduction, suffers a substitution reaction in which the SO32− and NCS− moieties are replaced by solvent molecules (L) thus forming [Co(cyclam)(L)2]2+ type complexes. The observation in the vibrational spectrum of the trans-[Ru(NH3)4(NCS)(SO4)] complex of the 2132, 887 e 478 cm-1 bands assigned, respectively, to the νCN, νCS e δ(NCS) vibrational modes of the NCS− ligand indicates that this moiety is coordinated through the nitrogen atom. Electrochemical and spectroscopic studies of this compound in aqueous medium indicate that the reduction of the metal center induces the replacement of SO42− ligand by a water molecule. The synthesis of the binuclear compound, therefore, was made under reductive conditions aiming to produce the aquo-complex and, then, replace the water molecule by a coordination site of the trans-[Co(cyclam)(SO3)(NCS)]·4H2O complex. The results obtained for the isolated material hints that the binuclear complex is formed with the NCS− fragment as the bridge ligand. The acquired cyclic voltammogram presents two redox process with the half-wave formal potentials (E1/2) observed at −0.27 and 0.13 V vs Ag|AgCl and being assigned to the Co and Ru metal centers, respectively. In comparison to the monomers, the positive potential shift reflects the stabilization of the reduced state of the ruthenium metal atom (RuII) and the destabilization of the cobalt metal center (CoIII). This result is assigned to the coordination to an oxidated metal center, CoIII, whose effective nuclear charge increased the electronic delocalization increasing the withdrawing character of the NCS− bridge ligand. The comproportionation constant, Kc = 5.78 x 106, was calculated from the difference between the E1/2 values. The Kc value indicates a strong electronic communication between the metal atoms and classifies this binuclear complex as a mixed valence system of class II.