Modelagem tensorial para estimação de parâmetros em arranjos de antenas polarimétricas

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Paiva, Jordan Silva de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/8005
Resumo: In this dissertation, we propose methods based on tensor signal processing for the parameter estimation in electric vector (Tripole) antenna arrays, considering different structures of arrays (ULA, L-shape and UPA). Initially, using a L-shape array, we develop a third order (3-D) tensor model for the received data. Based on this model, a trilinear alternating least squares (T-ALS) algorithm is used for the blind estimation of the source’s parameters. Then, under supervised transmission an alternative method is proposed by resorting to the SVD decomposition, which is compared to the T-ALS algorithm. A second approach is proposed, which is based on a uniform planar array antenna (UPA). In this case a fourth-order (4-D) tensor model is obtained, and the Q-ALS (Quadrilinear Alternating Least Squares) algorithm is used for parameter estimation. An alternative method is also proposed, which exploits the factorization of the Khatri-Rao product. Considering the supervised case, a new algorithm called Nested-SVD is proposed and a comparative study with Q-ALS, T-ALS and SVD algorithms is carried out. The performance of the proposed methods is evaluated through Monte Carlo simulations in different scenarios and array settings. Finally, computational modeling of electric tripole using the high frequency simulation software (HFSS) was performed, enabling the extraction of the L-shape and UPA spatial array gain. Then, the performance of the proposed tensor methods is evaluated in a more realistic scenario, and compared to idealized omnidirectional and unitary gain antenna array models