Estudo dos mecanismos envolvidos na separação e ruptura simultâneas de biomassa algal pelo uso da tecnologia de eletroflotação por corrente alternada

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Carvalho Neto, Riamburgo Gomes de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/11180
Resumo: Among the various steps for microalgae transformation in biodiesel, the harvesting and cell disruption processes are particularly important, since technologies available for this purpose have usually high costs, undermining the energy recovery viability. This work studied the mechanisms involved in the simultaneous harvesting and cell disruption of microalgae using electroflotation by alternating current (EFCA), as well as to investigate the system capacity on nutrients removal from waste stabilization ponds effluents. Coagulation/flocculation tests were performed using synthetic (FeCl3 e Al2(SO4)3) and organic (Tanfloc SG e SL) coagulants to evaluate the chemically assisted sedimentation of the algal biomass. The EFCA reactor was designed to operate in batch, using non-consumable electrodes and low electrical power, and evaluated the harvesting potential in the presence and absence of coagulants. After this, experiments were performed varying the electrode frequency to verify the optima condition for simultaneous harvesting and cell disruption of microalgae. The system capacity in terms of nutrients removal was also investigated as well as the mechanisms involved. It was possible to remove algae biomass both using chemically assisted sedimentation and EFCA. However, the electrolytic technology is more attractive, not only for the turbidity and chlorophyll-a efficiencies founded, but also because there is no apparent need of coagulants, which makes the process cheaper and facilitates the microalgae biomass reuse. The EFCA was even able to promote the cell disruption of microalgae and the liberated lipids were able to attach to the algal biomass separated by the process. A lipid yield of 14 % in terms of dry matter was found, even when a complex matrix from waste stabilization ponds was used. The study of the mechanisms involved in EFCA revealed the good system ability to generate hydrogen gas, which contributes to microalgae harvesting and can make the process even more sustainable under an energetic perspective. Furthermore, the generation of oxidant species was found which helps the harvesting and cell disruption process. The effect of different vibration frequencies in the lipid yield was not apparent. We sought to elucidate the mechanisms involved on total phosphorus removal, and probably the removal was due to iron formation in the process, in which the concentrations were close to 2.5 mg/L after 70 minutes batch time. In terms of ammonia removal, possibly the mechanism was an indirect oxidation by excess of hypochlorous acid to form nitrogen gas, which helps the separation process. The use of microalgae from stabilization ponds showed a potential alternative for the processes traditionally used nowadays for microalgae production (photobioreactor and raceway ponds), and showed to be attractive to all processes that demand microalgae harvesting.