Análise de determinantes da inadimplência (pessoa física) tomadores de crédito: uma abordagem econométrica

Detalhes bibliográficos
Ano de defesa: 2004
Autor(a) principal: Lima, Evanessa Maria Barbosa de Castro
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/5467
Resumo: In the financial intermediation, banks focus on its main activity, allocating resources from clients with surplus to deficit clients. The uncertainty related to the characteristics or payment capacity of the clients establishes the risk and the need to search for new alternatives to protect the institutions from potential losses, which may reflect on lower profits. Besides the subjective issue of credit analysts, the use of quantitative models, based on statistical, mathematical or econometric practices are becoming an important tool to support credit managers on the decision making process. There are several models of risk evaluation, which are adopted by financial institutions such as the credit scoring and the behavioral scoring models. The credit-scoring model has been widely used, especially on the concession of individual credit. The credit scoring model uses techniques such as discriminant analysis, mathematic programming, econometrics, neural networks, among others, to analyze particular characteristics of individuals where it establishes a metric separation of good and bad payers, therefore providing different nonpayment status to each. This present dissertation has the main objective of analyzing the determinants of nonpayment status (individuals), using an econometric approach based on the Logit model. The model utilized was a model for approval of credit in the opening from the bill shackle, starting from a study with 308 observations (physical registers Persons), based in the real experience of a financial institution, whose objective is he reach a credit approval rate such that the medium prescription after the losses of loans be maximized.