Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
Freitas, Samuel Sanches de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.repositorio.ufc.br/handle/riufc/72757
|
Resumo: |
Chest X-ray is the most common type of imaging examination in the world. It is widely used for diagnosing thoracic diseases and is one of the most valuable tools when interpreted carefully. In this context, to assist doctors in diagnosing thoracic diseases more easily, this study proposes a machine learning model to perform such diagnoses using cloud-based X-ray images. Accuracy, loss, and area under the curve (AUC) metrics are used to evaluate the model’s performance. The proposed model demonstrates a high success rate, achieving 98% accuracy for some diseases. Additionally, this study implemented a system provisioned in an AWS architecture, setting it apart from other works related to X-ray classification. |