Segmentação de imagens de radar de abertura sintética por crescimento e fusão estatística de regiões

Detalhes bibliográficos
Ano de defesa: 2005
Autor(a) principal: Carvalho, Eduardo Alves de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/16137
Resumo: The regular coverage of the planet surface by spaceborne synthetic aperture radar (SAR)and also airborne systems have provided alternative means to gather remote sensing information of various regions of the planet, even of inaccessible areas. This work deals with the digital processing of synthetic aperture radar imagery, where segmentation is the main subject. It consists of isolating or partitioning relevant objects in a scene, aiming at improving image interpretation and understanding in subsequent tasks. SAR images are contaminated by coherent noise, known as speckle, which masks small details and transition zones among the objects. Such a noise is inherent in radar image generation process, making difficult tasks like automatic segmentation of the objects, as well as their contour identification. To segment radar images, one possible way is to apply speckle filtering before segmentation. Another one, applied in this work, is to perform noisy image segmentation using the original SAR pixels as input data, without any preprocessing,such as filtering. To provide segmentation, an algorithm based on region growing and statistical region merging has been developed, which requires some parameters to control the process. This task presents some advantages, as long as it eliminates preprocessing steps and favors the detection of the image structures, since original pixel information is exploited. A qualitative and quantitative performance evaluation of the segmented images is also executed, under different situations, by applying the proposed technique to simulated images corrupted with multiplicative noise. This segmentation method is also applied to real SAR images and the produced results are promising.