Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Costa, Heloina Nogueira da |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.repositorio.ufc.br/handle/riufc/15541
|
Resumo: |
The natural sand used in civil construction has become scarce due to the exhaustion of natural reserves and environmental constraints imposed by the regulatory agencies. Consequently, the prices of those inputs are likely to increase, burdening the consumer. In search of alternatives, sustainable and economical, this study proposes characterize crushed sand from quarries in the Fortaleza metropolitan region (RMF) and evaluate its implementation, as fine aggregate, in conventional concrete, as a replacement for natural sand. The experimental study is divided into two stages. The first one is the characterization of the physical, chemical and petrographical properties of eight kinds of crushed sand from RMF through the grading, density, water absorption, pulverulent material content, bulk density, grain shape analysis, alkali-aggregate reaction, petrographic analysis, X-ray fluorescence spectrometry (XRF) and X-ray diffraction (XRD) tests. The second step is the properties evaluation of the concretes produced with crushed sand incorporation. The tool "design and analysis of experiments" was used. The crushed sands were rated into three groups and a representative sand for each group was used in the concrete production, where two independent factors (water/cement ratio and crushed sand replacement content) were determined by ranging in three levels each one of them. The measurement variables analyzed were the additive consumption, compressive strength, diametral tensile strength, shrinkage, water absorption, void ratios, density and natural carbonation. The results suggest the viability of using crushed sand to replace natural sand in conventional concrete by 75%, given that the workability can be achieved with the use of plasticizing additives, and in general, there is an increase in the compression resistance, reduced water absorption and void ratios, in other properties the crushed sand incorporation produces no significant effects, therefore their use is considered to be technically feasible. |