Consumo de Dioxido de Carbono na Reforma do Metano com Síntese de Nanotubos de Carbono

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Sales, Bárbara Maria Campos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/9601
Resumo: The consumption of greenhouse gas has been subject of research since its excessive liberation has been identified as a major cause of global warming observed in recent decades. In the academic the consumption of these gases emerges as a promising alternative to achieve the balance between its emissions and it’s consumption in order to minimize its atmospheric concentration. The reaction of the dry reforming of methane was studied by varying the reaction conditions (temperature and CH4/CO2 ratio) to obtain the most suitable reaction conditions (in the range employed), to promote the consumption of methane and carbon dioxide with production of synthesis gas (H2/CO) and to verify the characteristics of the deposited coke on the catalyst surface. The catalysts synthesized (Ni/SiO2, and Co/SiO2 NiCo/SiO2) were characterized by atomic absorption, fluorescence X-Ray, N2 adsorption isotherms, X-Ray diffraction and temperature programmed reduction. After the catalytic tests the samples were analyzed by temperature programmed oxidation, raman spectroscopy, transmission electron microscopy and scanning electron microscopy. The catalytic tests were conducted at different temperatures (550, 675 and 800°C) and reasons CH4/CO2 (0.5, 4.0 and 2.25) demonstrates the superiority of the performance sample NiCo/SiO2 catalyst and suggests that in specifics conditions (higher temperature and ratio CH4/CO2) it is possible to use carbon dioxide above 90% and production of synthesis gas with H2/CO ratio close to unity. Analysis by temperature programmed oxidation, as well as Raman spectroscopy, transmission electron microscopy and scanning electron microscopy indicated the formation of carbon nanotubes multi-wall (MWNTs) and amorphous carbon.