Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Oliveira, Carla Jamile Sobreira de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.repositorio.ufc.br/handle/riufc/7986
|
Resumo: |
This research work evaluated the feasibility of the micro-aerobic process to remove sulfide from biogas in order to control biogas quality and odors in wastewater treatment plants (WWTP). Moreover, the impact of micro-aeration over the anaerobic system stability was evaluated, and a comparison of the micro-aerobic biotechnology with a chemical absorption process (NaOH) for sulfide removal from biogas was performed. The experiments were performed in a continuous mode in two acrylic-constructed mesophilic (28º C) bioreactors fed with synthetic wastewater. The experiment consisted into four operation phases for both reactors, being the two first phases used for the stabilization of the systems. During the operation phase III, sodium sulfate was introduced into the reactors at a COD/SO42- ratio of ~7. At the operation phase IV, the hydrogen sulfide removal systems were applied into the reactors, i.e. the reactor 1 (R1) was operated under strictly anaerobic conditions with a biogas caustic scrubbing, and the reactor 2 (R2) was operated at micro-aerobic conditions by using a 0,2 mL.min-1 atmospheric air injection into the headspace of the system. Physical-chemical analyses, such as COD, pH, alkalinity, sulfate, dissolved sulfide was performed, and biogas was characterized in terms of N2, O2, CH4, CO2, H2S, NH3. During the operation phases III and IV, both rectors showed a good stability in terms of COD removal (>80%) and sulfate removal (>90%). During the micro-aerobic process, the introduced oxygen did not affect organic matter removal. Regarding biogas quality, content of methane in the micro-aerobic system decreased to a value of 76% (phase III) and 52% (phase IV), due to the dilution with the nitrogen present in air. Meanwhile, when nitrogen interference was removed, similar concentrations to the anaerobic phase (phase III) were obtained, suggesting that methanogenic archaea was not significantly affected by the introduced oxygen. Regarding to sulfide removal, the micro-aerobic process was effective, both removing sulfide from the liquid and the gaseous phases, showing an average removal of 42% e 94%, respectively. The biogas cleaning process applied to R1 showed a 100% sulfide removal from biogas and 100% removal of CO2 and NH3. In this way, both, the micro-aerobic and the scrubbing processes were efficient for sulfide removal and can be used for odor control in WWTP. The preliminary economical study considering two technologies (micro-aerobic and the scrubbing) showed that even taking into account the initial investment for the aeration and the electricity costs for the continuous aeration, the operational costs with the chemical acquisition for the scrubbing process are much higher. Likely, the micro-aerobic process will be more advantageous than the scrubbing process after a detailed economic analysis or a life cycle assessment, however, it is necessary to perform more research in order to confirm these hypotheses. |