Análise de desempenho dinâmico na interação CA-CC em elo de transmissão em corrente contínua

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Bandeira, João Henrique Lima
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/43114
Resumo: Power systems operation continues searching for more flexible alternatives in permitting a better bulk power transmission performance. In large systems such as those in countries with the great territorial extension, i.e. Brasil, China, India and USA, the challenge to make energy transmission feasible from one point to another in the country has becoming increasingly efficient because of the technologies in HVDC. At this work, the most used technologies in direct current transmission are presented, as well as their possible advantages, disadvantages and applications. The goal of this study is to model and analyze monopolar and bipolar operation in HVDC systems using MATLAB/Simulink environment. At first, a monopolar direct current system of 1,000 MW was analyzed. The model showed realiable reproduction of the operational characteristics of an HVDC link, and then it is used for dynamic performance analysis including three-phase, ground-phase and ground-pole faults Then, the effect of SCR in transmission performance was analyzed, showing that weak systems have more unstability in its operation. Lastly, Belo Monte’s Bipole 1 is modeled based on MATLAB/Simulink environment, interconecting the AC systems of Xingu (PA) and Estreito (MG) substations, through a transmission line with approximately 2,140 km of extension. Bipolar operation for power transfer at 4,000 MW and ± 800 kV is analyzed, observing the system behavior for failures and operation mode. It was verified that the model is able to reproduce the operational characteristics of the studied line, serving as a tool to analyze effects of each fault type during system operation.