Detalhes bibliográficos
Ano de defesa: |
2007 |
Autor(a) principal: |
Rocha, Maria Valderez Ponte |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.repositorio.ufc.br/handle/riufc/15778
|
Resumo: |
The aim of this work was to investigate the use of natural and clarified cashew apple juice as an alternative raw material for biosurfactant production by Pseudomonas aeruginosa and Bacillus subtilis. In the assays with P. aeruginosa ATCC 10145 on rotary shaker, the influence of medium (CAJN) supplementation with soybean oil, as source carbon, and with different sources of nitrogen: peptone, NaNO3 and (NH4)2SO4, were investigated. Results were compared with the obtained when Nutritive Broth (NB) and CAJN were used as culture medium. Maximum reduction in the Surface Tension (41%)was obtained when P. aeruginosa was grown on CAJP, after 24 h of cultive. In these assays, the surface tension was reduced from 50 to 29.5 dina.cm-1. When P. aeruginosa was grown on CAJN supplemented with NaNO3 or (NH4)2SO4, the reduction in the Surface Tension was of 37.14 and 15.85 %, respectively, after 72 h of cultive. Evaluated CAJP supplemented with glycerol and soybean oil. In these assays, high growth was observed, an optical density of 5,0 at 600 nm with 48h of culture was observed, however small reduction in surface tension (16,51 %) was achieved using glycerol as carbon source. Based on the results in flasks, the mediums CAJP and CAJNaNO3 were selected for further studies in a biorreator. The assays were conduced in biorreator at 30°C, 200 rpm and without aeration. Nevertheless, the expected profile of rhamnolipids production was not observed. Such fact may have happened due to the lack of oxygen in the cultivation medium, since the process was conducted without aeration. The stability of biosurfactant produced by P. aeruginosa in CAJP against NaCl, pH and temperature and its chemical structure were evaluated. The biosurfactante produced by P. aeruginosa was stable to temperature and variations, as well as against different NaCl concentrations. Furthermore, it emulsified all the studied hydrocarbons and soybean oil. No protein was detected in the extracted biosurfactant; it however contained carbohydrate. The highest biosurfactant production occurred with 48h,when CAJP was used as culture medium (3.86 g of biosurfactant for 1000 mL de medium) and the poorest in NB. In parallel, different assays were performed to optimize the culture media for surfactin production by Bacillus subtilis using CAJN and clarified cashew apple juice (CAJC). Best results were obtained when mineral medium supplemented with yeast extract (5 g.L-1) was used and formulated with CAJC (glucose concentration - 10 g.L-1). In these assays, a reduction of 21.37 % in the surface tension was obtained and production of surfactin was observed by HPLC. However, best results of surface tension were higher than 39 dina.cm-1. Therefore, twelve strains of Bacillus sp. were evaluated regarding the ability of producing surfactin when grown on CAJC. After 48 hours of cultivation, with strain BE 08, the surface tension of the fermented broth, free of cells, reached 28.0 ± 1.0 dina.cm-1,and it also presented emulsifying activity. The results obtained in this work indicate that the cashew apple juice is an appropriate raw material for biosurfactants production. |