Channel estimation techniques applied to massive MIMO systems using sparsity and statistics approaches

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Araújo, Daniel Costa
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/23478
Resumo: Massive MIMO has the potential of greatly increasing the system spectral efficiency by employing many individually steerable antenna elements at the base station (BS). This potential can only be achieved if the BS has sufficient channel state information (CSI) knowledge. The way of acquiring it depends on the duplexing mode employed by the communication system. Currently, frequency division duplexing (FDD) is the most used in the wireless communication system. However, the amount of overhead necessary to estimate the channel scales with the number of antennas which poses a big challenge in implementing massive MIMO systems with FDD protocol. To enable both operating together, this thesis tackles the channel estimation problem by proposing methods that exploit a compressed version of the massive MIMO channel. There are mainly two approaches used to achieve such a compression: sparsity and second order statistics. To derive sparsity-based techniques, this thesis uses a compressive sensing (CS) framework to extract a sparse-representation of the channel. This is investigated initially in a flat channel and afterwards in a frequency-selective one. In the former, we show that the Cramer-Rao lower bound (CRLB) for the problem is a function of pilot sequences that lead to a Grassmannian matrix. In the frequency-selective case, a novel estimator which combines CS and tensor analysis is derived. This new method uses the measurements obtained of the pilot subcarriers to estimate a sparse tensor channel representation. Assuming a Tucker3 model, the proposed solution maps the estimated sparse tensor to a full one which describes the spatial-frequency channel response. Furthermore, this thesis investigates the problem of updating the sparse basis that arises when the user is moving. In this study, an algorithm is proposed to track the arrival and departure directions using very few pilots. Besides the sparsity-based techniques, this thesis investigates the channel estimation performance using a statistical approach. In such a case, a new hybrid beamforming (HB) architecture is proposed to spatially multiplex the pilot sequences and to reduce the overhead. More specifically, the new solution creates a set of beams that is jointly calculated with the channel estimator and the pilot power allocation using the minimum mean square error (MMSE) criterion. We show that this provides enhanced performance for the estimation process in low signal-noise ratio (SNR) scenarios.