Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Silva Neto, Antonio Alves da |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.repositorio.ufc.br/handle/riufc/10488
|
Resumo: |
High energy demand and global climate changes have generated interest in world leaders to invest in research on alternative and renewable fuels. In this perspective, the macroalgae are gaining wide attention from researchers around the world as an alternative source of renewable biomass for bioethanol production, which is currently called fuel "third generation". The use of seaweed as a feedstock for bioethanol production has advantages such as (1) no competition with food production, (2) high carbohydrates content, (3) low lignin content and (4) high productivity. The potential of the red seaweed Hypnea musciformis to provide fermentable carbohydrates for bioethanol production was evaluated in this study. The algae was obtained from a commercial cultivation, located on the Flecheiras beach, Trairi, Ceará and after washing, drying and grinding 5 g were added to 100 mL HCl (0.2, 0.5 and 1.0 M) in Erlenmeyer flasks, autoclaved at 121 ºC (10, 20 and 30 min). It was observed the presence of galactose (7.4 to 10.8 g.L-1) and glucose (3.4 to 4.7 g.L-1) in all hydrolyzed and the hydrolysis condition 0.5/20, with a concentration of glucose + galactose 14.8 g.L-1, was selected for testing fermentation of monosaccharides by Saccharomyces cerevisiae at 30 ° C. The results showed that glucose and galactose were consumed simultaneously, however this consumption only started after 7 h of fermentation and after 52 h, 82.5% of glucose and 72% galactose had been consumed, with a maximum yield of 5.3 g.L-1 of ethanol, it represents a fermentation efficiency of 50% theory and showing the ability of S. cerevisiae ferment galactose from algal feedstock with a yield of 0.1 g ethanol/g dry seaweed. It was observed in the hydrolysis condition selected, a higher specific rate of the substrate consumption accompanied by the rate of ethanol production. The ethanol yields based on consumption of substrates (glucose + galactose) and biomass were 0.315 and 0.08 (g/g) respectively. The biomass and ethanol productivity were 0.008 g.L-1.h-1 and 0.100 g.L-1.h-1, respectively. With the date obtained it can be conclude that the red seaweed H. musciformis showed be a potential renewable source of biomass for the production of bioethanol. However, other studies are needed to optimize the production process of bioethanol from these organisms. |