Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Martins, Ana Caroline Vasconcelos |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.repositorio.ufc.br/handle/riufc/28258
|
Resumo: |
Glutamate receptors are the mediators of most excitatory neurotransmission processes in the central nervous system, acting as prominent targets for the treatment of several neurological disorders such as Epilepsy, Amyotrophic Lateral Sclerosis, Parkinson’s disease and Alzheimer’s disease. Hence an improved understanding of how glutamate and other ligands interact with the binding domain, of these receptors, can bring relevant insights to the development of new ligands. Therefore, this work aims to study the GluA2–ligand interaction using the structure of GluA2 co-crystallized with the ligands glutamate, AMPA, kainate and DNQX applying a method based on the Density Functional Theory combined with the molecular fractionation with conjugate caps scheme. To address that the dielectric constant of the GluA2 receptor is not homogeneous, a novel molecular approach was proposed and it was applied to study the interaction between the GluA2 and the ligands glutamate, AMPA, kainate and DNQX. The results obtained, considering the inhomogeneous model, were compared with those obtained using an uniform dielectric function for the GluA2 receptor and with data published in the literature establishing a more detailed description of the relevant amino acid residues for the protein-ligand binding interaction. Molecular dynamics studies and protein DFT calculations usually consider a fixed value for the protein dielectric function. In this work when ε = 1 is considered, many amino acid residues seem important, but when the dielectric constant shield was considered, they lost their relevance. The results for the GluA2-ligand total interaction energy and the D1-ligand and D2-ligand total interaction energy also shed some light on the differentiation between full and partial agonists, and between agonists and antagonists. Additionally, the results allow a hypothesis on the correlation between the Glu705-ligand interaction energy and the ligand action, paving the way for the use of the inhomogeneous dielectric function to study glutamate receptors and other protein-ligand systems. Finally, the results also suggests that for different ligands, different homogeneous dielectric constant will be able to well represent the system GluA2-ligand, making it necessary the previous analyses with the inhomogeneous dielectric constant approach. |