Avaliação da tolerância à salinidade em quatro genótipos de sorgo sacarino

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Silva, Maria Liliane dos Santos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/23933
Resumo: Salinity represents one of the most serious environmental stresses that limit crop growth and production, inducing morphological, structural and metabolic changes in higher plants. It is a problem that can affect the development of the plants in a differentiated way regarding the species and even between genotypes. The objective of this work was to evaluate the behavior of four sorghum genotypes for tolerance to different salinity levels. For this, an experiment was conducted in a greenhouse where sorghum seeds were sown in 8-liter pots containing a mixture of sand and humus in a 2: 1 ratio. Four seeds were sown per pot, and after seven days of sowing a thinning was done leaving only two plants per pot. Soon after thinning, the application of saline treatments was also started. The experimental design was a randomized complete block design in a 5 x 4 factorial scheme with five concentrations of salts in the irrigation water, corresponding to the electrical conductivity (CEa) of 0.5 (control), 2.5; 5.0; 7.5 and 10.0 dS m-1, and four sorghum saccharin genotypes (CSF 11, CSF 15, P 76 and P 298), with five replicates, each replicate consisting of two plants. After 40 days of the beginning of the application of the treatments were carried out readings of the gas exchanges and the relative contents of chlorophyll in completely expanded leaves. The collection was performed 45 days after the beginning of saline treatments. The plants were evaluated for dry matter yield of leaves, stem + hems and roots, leaf area, height and stem diameter. With the material collected, the analysis of organic and inorganic solutes and the activity of the antioxidant enzymes were carried out in the laboratory. Growth measures and gas exchange of sorghum plants were significantly affected by saline stress, but the CSF11 and CSF 15 genotypes showed the lowest reductions in growth parameters, demonstrating a greater tolerance to this stress. On the other hand, the genotype P 298 showed greater reductions in the growth parameters evaluated. The levels of Na+ and Cl- ions were increased by saline stress, whereas those of K+ and NO3- ions were reduced in all sorghum genotypes studied. In general, the contents of organic solutes were increased by salinity in all the genotypes evaluated in this study. The antioxidative system was more efficient when the plants were submitted to the second level of stress (CEa of 2.5 dS m-1), obtaining increases in the activities of the antioxidant enzyme, mainly in the genotype CSF 11, that showed much more enzymatic activity Higher than the other genotypes. Considering the results obtained, we can classify genotype CSF 11 as the most tolerant to saline stress, while the genotype P 298 proved to be the most sensitive cultivar to the salinity conditions.