Avaliação da coagulabilidade e da calcificação em filmes de quitosana sulfonatada e carragenana

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Campelo, Clayton Souza
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/10674
Resumo: Various strategies have been proposed to reduce the plasma proteins adsorption and consequently the probability of thrombus formation on materials when contacted with blood. Furthermore, another problem associated with biomaterials is the calcification process, which is described as calcium phosphate formation, which is the primary cause of failures in soft tissues and implants. Chitosan and carrageenan are two polymers that show properties that make them promising for use as biomaterials. Chitosan, due to amino groups in its structure, may promote platelet adhesion, being necessary to perform a chemical modification on it, such as sulfonation reactions, in order to reduce plasma protein adsorption. The presence of sulfate groups in carrageenan structure may contribute to obtain surfaces with antithrombogenic properties without the need of chemical modification on its structure. The formation of polyelectrolyte complexes (PECs) combines the high biocompatibility of chitosan with the charge density of carrageenan, generated by the presence of sulfate groups. This work aimed to study the effects of calcification and thrombogenicity of chitosan and carrageenan films, characterizing them by microscopy and spectroscopy techniques. We also conducted the study of metal surfaces coating using these polymers. A reduction in the effects of calcification for chitosan and carrageenan blends and for sulfonated chitosan films (Ca/P 0.11 or phosphate absence) was observed, reducing the formation and deposition of calcium salts when compared with pristine chitosan (Ca/P 2.78). Assays of platelet adhesion for chitosan surfaces when modified by sulfonation reaction or when blended with carrageenan, showed adhesion on average of 1 to 2 platelets/0.01mm2 against thrombus formation on chitosan film. For the coating essays, the modification on metal surface was characterized by the changing of carbon and oxygen percentage amount on the chemical composition surface, comparing the raw electropolished steel and grafted chitosan. The successive changes observed in the contact angle reinforce the success of the grafting of polymers, forming a hydrophilic layer both for pristine and sulfonated chitosan. From the results obtained, it can be inferred that the sulfonated chitosan and chitosan/carrageenan blends are promising for use as biomaterials in blood contact.