Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Viana, Emanuel Mendonça |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.repositorio.ufc.br/handle/riufc/4080
|
Resumo: |
Let I : ∑n → Mn+1 be an immersion of an n-dimensional connected manifold ∑ in an (n + 1)-dimensional connected completed Riemannian manifold M without conjugate points. Assume that the union of geodesics tangent to I does not cover M. Under these hypotheses we have two results: 1. M is simply connected provided that the universal covering of ∑ is compact. 2. If I is a proper embedding and M is simply connected, then I(∑) is a normal graph over an open subset os a geodesic sphere. Furthermore, there exists an open star-shaped set A M such that A is a manifold with the boundary I(∑). |