Estudo eletroquímico da adsorção de moléculas organosulfuradas sobre superfície de ouro

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: Parente, Marcelo Monteiro Valente
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/2075
Resumo: Modified gold surface with organosulfur species, 1,4-dithiane (1,4-dt) and 4- mercaptopyridine (pyS), was studied in this work. The study was carried out using the following electrochemical techniques: linear polarization with rotate disk electrode, cyclic voltammetry, differential pulse voltammetry, electrohydrodynamic impedance and electrochemical impedance spectroscopy. Other techniques also gave support, such as, atomic force microscopy (AFM), Scanning tunneling microscopy (STM), RAMAN spectroscopy and quartz crystal microbalance (QCM). For the modified gold surface with the 1,4-dt, it was observed the decrease of the redox-active [Fe(CN)6]3- species with the increase of the immersion time of the gold electrode in the modifier solution. These results suggest that the fractional coverage increases with the modification time. The electrohydrodynamic impedance results together with the MFA and MST results suggest that this surface is partially blocked presenting defects on the formed film. The RAMAN spectra suggest that those defects can be resulting of the adsorption of the different configuration of the modifier molecules (1,4-dt) on the surface ("trans" and "gauche"). The electrochemical results about the modified gold surfaces with the molecule pyS indicate an increase of the electron transfer process with the increase of the immersion time, which suggests the loss of the covering power on the modified gold surface with this species. The AFM results agree the previous results demonstrating that this surface presents larger amount of defects for longer modification times. The frequency curves variation (ΔF) versus the immersion time indicate a mass increase on the modified gold surface with the species 1,4-dt and a process desorption for the species pyS confirming the results obtained previously.