Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Pinheiro, Daniel Pascoalino |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.repositorio.ufc.br/handle/riufc/26907
|
Resumo: |
Cancer consists in a set of diseases, which present in common the disordered proliferation and the inability of normal cellular differentiation. It is a disease of high incidence and one of the main causes of mortality worldwide, with an estimate for Brazil, in the biennium 2016-2017, indicating the occurrence of about 600 thousand new cases. Despite the large arsenal of chemotherapy in clinic, several studies are conducted in the search for drugs with higher therapeutic potency and, especially, more selective for tumor cells. Naphthoquinones are object of several studies due to their pharmacological activities, presenting excellent antitumor activity, besides microbicidal and anti-inflammatory activities, appearing as good candidates for the cancer treatment. Thus, the present study aimed to evaluate the in vitro cytotoxic effect of naphthoquinone compounds, as well as to study the mechanisms of action involved in the process of cell death induction by these compounds. Therefore, the compounds were initially subjected to a target-directed screening as inhibitors of topoisomerases and DNA repair enzymes, as well as evaluation of cell viability in several tumor and non-tumor cell lines. From the initial group of compounds, two were selected for further evaluation of the mechanisms of action: synthetic naphthoquinone ENSJ39, analogous to Nor-β-lapachone; and ENSJ108, analogous to α-lapachone. The results showed that, in the HCT-116 cancer cell line, the naphthoquinone ENSJ39, bioactivated by the NQO1 enzyme, induced an antiproliferative effect followed by a cytotoxic effect in a concentration-dependent manner, inhibiting cell cycle progression with G2/M arrest. These effects are related to the DNA damage caused by the reactive oxygen species generated by the drug. DNA damage activates the NHEJ and HR repair pathways, and is also related to the drug-induced topoisomerase II inhibition, which leads to the trapping of Top2cc; besides of a possible catalytic inhibition of topoisomerase I. These effects may induce death by apoptosis via the mitochondrial (intrinsic) pathway or, secondarily, appear to activate the extrinsic pathway. The naftoquinone ENSJ108, in tumor cells HCT-116, induced an antiproliferative effect followed by a cytotoxic effect, in a concentration-dependent manner, promoting the generation of reactive oxygen species (ROS). It results in a ROS-dependent DNA damage, leading to hyperactivation of PARP1, culminating in a type of cell death due to regulated necrosis called parthanatos. The drug also causes topoisomerase II inhibition by top2cc trapping, resulting in double-strand breaks and activation of TDP2 and HR. Secondarily, the drug appears to activate apoptosis via the extrinsic pathway. In conclusion, the naphthoquinones ENSJ39 and ENSJ108 show potent in vitro antitumor activity, highlighting the importance of future studies in animal models to evaluate the therapeutic potential of these molecules. |