Processos de obtenção de nanocelulose a partir das fibras de prensagem do mesocarpo do dendê

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Souza, Nágila Freitas
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/10789
Resumo: The present study aimed to extract nanocellulose crystalline (NCC) and nanofibrillated (NCF), and recover of lignin from oil palm mesocarpfiber (also known as palm pressed fiber). Initially, the fibers were subjected to pulping acetosolv followed by bleaching with peroxide in basic medium. The crude fiber, bleached and post acetosolv were characterized physically, chemically and morphologically. To obtain the NCC a 23 factorial design was used. NCF was obtained by combinations of the number and size of steps chamber microfluidizer. The nanocelulose obtained by acid hydrolysis (NCC) and microfluidization (NCF) was characterized by X-ray diffraction (XRD), zeta potential and particle size. According to the results, the pre-treatments were efficient, removing a significant amount of amorphous components, promoting a greater exposure of the pulp. The lignin rich fraction, called black liquor, had a yield of 62 % compared to the lignin initially present. Nanocellulose suspensions obtained showed typical gelatinous appearance and zeta potential of -26.6 mV and -40.6 mV, which configures stability.The crystallinity index of cellulose polymorphs I and II for nanocelulose crystal obtained by pre-treatment 1 was 65%, and for the other nanofibrilada nanocrystals obtained from the pre-treatment 2 were crystallinity of 70 and 61%, respectively. The nanostructures obtained still showed good thermal stability, demonstrating a greater microfibrillated nanocelulose to 267 ° C to 250 ° C the crystal. Furthermore, nanostructures were observed with typical cellulose lengths (L) between 172-404 nm and a diameter (D) lying between 5 and 12 nm, which reproduces aspect ratios (L / D) as high as 39. This demonstrates that the nanocelulose produced can be displayed as reinforcement in polymer matrices, among other applications.