Estudo de equilíbrio e cinética de adsorção em resinas de troca iônica aplicado à separação cromatográfica contínua de frutose e glicose do xarope de caju

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Ramos, Josy Eliziane Torres
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/15774
Resumo: The cashew crop is considered one of the most important socio-economic activity in Northeastern Brazil. Despite being used industrially for the production of pulp, drinks and sweets, the cashew apple shows high levels of waste. A little more than 10% of crop is exploited commercially. In this context, adding value to products derived from the cashew apple - such as fructose and glucose syrups - may indicate alternative economical routes for producing regions, by consuming the surplus not absorbed by the market of juices and sweets. The simulated moving bed is one of the most innovative technologies that performs continuous chromatographic separation of isomers. One of the key points of this technology is the choice of operating conditions (flows and switching times) that provides adequate separation. This work presents studies of adsorption equilibrium of synthetic solutions of fructose and glucose, under overloaded conditions of concentration, aiming at the separation of these sugars in simulated moving bed for the production of high-fructose and high-glicose syrups. The adsorption isotherms were obtained by frontal analysis, using synthetic solutions with fructose and glucose concentrations ranging from 10 to 120g / L, at temperatures of 30, 40 and 60 ° C, using the ion exchange resins Dowex MTO 99Ca and Diaion UBK 555. The breakthrough curves of synthetic solutions were compared with those obtained from the cashew syrup for validation of data, tha sake of model validation. Tha measured isotherms were non-linear and well described by the Langmuir model. The dispersive transport model was used to reproduce the behavior of breakthrough curves and to estimate mass transfer parameters, using the gPROMS commercial solver. Adsorption data were used to generate the region of complete separation (flowrate ratios in sections 2 and 3) of a simulated moving bed (SMB unit), based on the equilibrium theory (the triangle method), in order to predict operating conditions in a pilot unit.