Criptografia com resíduos quadráticos
Ano de defesa: | 2017 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do ABC
|
Programa de Pós-Graduação: |
Mestrado Profissional em Matemática em Rede Nacional - PROFMAT
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Link de acesso: | http://biblioteca.ufabc.edu.br/index.php?codigo_sophia=107455&midiaext=74910 http://biblioteca.ufabc.edu.br/index.php?codigo_sophia=107455&midiaext=74910/index.php?codigo_sophia=107455&midiaext=74911 |
Resumo: | Esse trabalho tem como objetivo mostrar como problemas de difícil solução, em especial o problema dos resíduos quadráticos, podem ser usados para desenvolver criptossistema com segurança demonstrável, com algumas aplicações que podem ser desenvolvidas com alunos de ensino fundamental e médio. Faz-se um resumo da história da criptografia, desde a Cifra de César e passando por diversos criptossistemas historicamente famosos, até chegar ao sigilo perfeito do one-time pad. São trabalhados também alguns conceitos matemáticos necessários, como as funções de mão única e uma breve explicação de algumas funções conjecturadas de mão única, que podem ser usadas em sistemas criptográficos seguros. Em seguida, apresenta-se os geradores de números pseudo-aleatórios, em especial o de Blum-Blum-Shub por empregar resíduos quadráticos. A seguir, há uma breve apresentação das funções de hash e do problema do aniversário associado a elas, com uma função de hash construída baseada no gerador de Blum-Blum-Shub. Também importante é a aplicação na encriptação com chave pública, em especial o criptossistema de Rabin, que também é usado para estabelecer um sistema de votação com base no homomorfismo apresentado por esse sistema. Para finalizar, fala-se sobre as provas de conhecimento zero e como as raízes quadradas módulo N podem ser utilizadas para isso, em particular com o Protocolo de Feige-Fiat-Shamir. Uma aplicação para a sala de aula é dada na forma de um leilão, utilizando o conceito da dificuldade da raiz quadrada modular. |