Algoritmos set-membership para equalização autodidata aplicados a redes de sensores sem fio

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Assis, Fábio Ferreira de
Orientador(a): Panazio, Aline de Oliveira Neves
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do ABC
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia da Informação
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Link de acesso: http://biblioteca.ufabc.edu.br/index.php?codigo_sophia=110479&midiaext=76143
http://biblioteca.ufabc.edu.br/index.php?codigo_sophia=110479&midiaext=76143/index.php?codigo_sophia=110479&midiaext=76144
Resumo: Este trabalho dedica-se ao estudo de algoritmos de filtragem adaptativa autodidata no modo difusão, com aplicações em redes de sensores sem fio (RSSF). No modo difusão, os nós sensores da rede possuem poder de processamento local e trocam informações com seus vizinhos. Neste trabalho, propomos dois algoritmos utilizando como base o algoritmo CMA no modo Difusão (CMAD), com duas abordagens distintas da técnica Set-Membership. O primeiro baseia-se no algoritmo Set-Membership Least Mean Squares (SM-LMS), desenvolvido também no modo difusão. Estendemos o algoritmo para o contexto não supervisionado, denotando por Algoritmo Set-Membership CMA no modo Difusão (SM-CMAD). Mostramos que este algoritmo apresenta desempenho melhor ou similar ao CMAD, em termos de velocidade de convergência, patamar de interferência intersimbólica (IIS) e possuindo a importante vantagem de reduzir as trocas de informações entre os nós, economizando energia e recursos da rede. O segundo algoritmo proposto se baseia no Set-Membership do Módulo Constante (SM-CM), o qual estendemos para o contexto de redes de sensores sem fio no modo difusão. Tal algoritmo é denotado por Algoritmo Set-membership CMA no modo Difusão Square-root Gamma (SM-CMAD-SG). Novamente o algoritmo apresenta um bom desempenho quando comparado com o CMAD e, quando comparado ao SM-CMAD, vemos que sua principal vantagem está na economia em termos de atualizações dos coeficientes do filtro, que chega a valores acima de 70% em diversos cenários de simulação, sem grandes perdas de desempenho economizando energia.