Desconvolução não-supervisionada baseada em esparsidade

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Fernandes, Tales Gouveia
Orientador(a): Suyama, Ricardo
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do ABC
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia da Informação
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Link de acesso: http://biblioteca.ufabc.edu.br/index.php?codigo_sophia=103802&midiaext=73277
http://biblioteca.ufabc.edu.br/index.php?codigo_sophia=103802&midiaext=73277/index.php?codigo_sophia=103802&midiaext=73278
Resumo: O presente trabalho analisa o problema de desconvolução não-supervisionada de sinais abordando a característica esparsa dos sinais envolvidos. O problema de desconvolução não-supervisionada de sinais se assemelha, em muitos aspectos, ao problema de separação cega de fontes, que consiste basicamente de se estimar sinais a partir de versões que correspondem a misturas desses sinais originais, denominados simplesmente de fontes. Ao aplicar a desconvolução não-supervisionada é necessario explorar características dos sinais e/ou do sistema para auxiliar na resolução do problema. Uma dessas características, a qual foi utilizada neste trabalho, é o conceito de esparsidade. O conceito de esparsidade está relacionado a sinais e/ou sistemas em que toda a informação está concentrada em uma quantidade pequena de valores, os quais representam a informação real do que se queira analisar sobre o sinal ou sobre o sistema. Nesse contexto, há critérios que estabelecem condições suficientes, sobre os sinais e/ou sistemas envolvidos, capazes de garantir a desconvolução dos mesmos. Com isso, os algoritmos para recuperação dos sinais e/ou sistemas utilizarão os critérios estabelecidos baseado na característica esparsa dos mesmos. Desta forma, neste trabalho será feito a comparação de convergência dos algoritmos aplicados em alguns cenários específicos, os quais definem o sinal e o sistema utilizados. Por fim, os resultados obtidos nas simulações permitem obter uma boa ideia do comportamento dos diferentes algoritmos analisados e a viabilidade de uso no problema de desconvolução de sinais esparsos.