Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Almeida, Iury Maia de
 |
Orientador(a): |
Souza, Rodrigo Rocha Gomes e
 |
Banca de defesa: |
Souza, Rodrigo Rocha Gomes e
,
Motta, Tiago Oliveira
,
Alves, Lynn Rosalina Gama
 |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal da Bahia
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Ciência da Computação (PGCOMP)
|
Departamento: |
Instituto de Computação - IC
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufba.br/handle/ri/39883
|
Resumo: |
A problemática da evasão de jogadores em jogos grátis-para-jogar representa um desafio significativo na indústria de jogos eletrônicos. A crescente popularidade desses modelos de negócios, nos quais os jogadores podem acessar o jogo gratuitamente, coloca uma ênfase crucial na retenção desses usuários para garantir o sucesso financeiro e a sustentabilidade do jogo. Nesse cenário, a análise preditiva emerge como uma ferramenta essencial para antecipar e compreender os padrões de evasão. O trabalho começou com um mapeamento sistemático de literatura no campo de modelos preditivos em game analytics, visando responder à principal questão de pesquisa, Como modelos preditivos estão sendo aplicados em game analytics?. A pesquisa foi conduzida com base em um protocolo que definiu os objetivos, questões de pesquisa e critérios de inclusão e exclusão. Os principais resultados indicam que a pesquisa sobre modelos preditivos em game analytics tem crescido significativamente desde 2010, com uma variedade de técnicas de aprendizado de máquina sendo aplicadas. Além disso os objetos de predição mais investigados incluem a probabilidade de vitória, a predição de evasão e a perícia do jogador. Quanto às técnicas de pré-processamento, foram identificadas várias abordagens, como análise de componentes principais (PCA) e técnicas de raspagem da web (web scraping). Focamos nossa pesquisa em predição de evasão, inicialmente pela definição de evasão e estabelecimento de datas de corte, com a consideração de múltiplas janelas de tempo para classificação dos jogadores como evadidos ou recorrentes. A análise abordou as ameaças à validade do trabalho, incluindo questões de definição de evasão, desequilíbrio de classes e o uso de técnicas como o SMOTE para balancear os dados. Foram avaliados seis modelos de aprendizado de máquina, com ênfase em métricas como acurácia, precisão, recall e AUC (Area Under the Curve). A técnica de 10-fold cross validation foi aplicada para validar os modelos, proporcionando uma visão mais abrangente de seu desempenho. A análise da importância das features revelou quais características dos jogadores eram mais relevantes para a previsão da evasão, embora a interpretação dessas features tenha sido destacada como dependente do contexto do jogo. Em última análise, o trabalho ofereceu insights promissores para a previsão de evasão de jogadores em jogos grátis-para-jogar, mas ressaltou a necessidade de abordagens cuidadosas e considerações contextuais para mitigar ameaças à validade e garantir a generalização dos modelos para diferentes conjuntos de dados e períodos no tempo. |