Classificação de obstáculos baseada no classificador k-nearest neighbors aplicada a um robô de inspeção de linha de transmissão

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Alcantara, Pedro Xavier
Orientador(a): Conceição, André Gustavo Scolari
Banca de defesa: Faria, Paulo César Machado de Abreu, Pinheiro, Oberdan
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Escola Politécnica, Departamento de Engenharia Elétrica
Programa de Pós-Graduação: em Engenharia Elétrica
Departamento: Não Informado pela instituição
País: brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufba.br/ri/handle/ri/29511
Resumo: Atualmente, nosso modo de vida esta cada vez mais dependente de energia elétrica. Essa característica faz com que as linhas de transmissão, responsáveis por fazer a conexão entre as unidades geradoras e consumidoras devam estar em condições de operação 24 horas por dia, 7 dias por semana. Normalmente a realização da inspeção das linhas de transmissão é feita por aeronaves tripuladas, condição muito cara e extremamente perigosa. Diante dessa perspectiva, robôs têm se tornado alternativas cada vez mais reais para o barateamento e aumento da segurança dessa atividade de inspeção. Para buscar autonomia nessa atividade, é necessário que o robô identifique os obstáculos no seu percurso para que possa continuar inspecionando a linha sem interrupções. Considerando esse contexto, o presente trabalho apresenta uma abordagem para caracterização e classificação dos obstáculos encontrados na linha. A estratégia abordada utiliza-se de um LiDAR para a coleta de dados, extração de features de forma e intensidade e a classificação utilizando o algoritmo de inteligência artificial k-Nearest Neighbor. A abordagem desse trabalho utilizou dois datasets para demonstrar o desempenho do método proposto, apresentando acurácia de 100% quando as imagens não apresentavam oclusão e 98,4% com o dataset que apresenta oclusão nas imagens. Foi realizada análise do classificador com a adição de ruído dos tipos salt&pepper e speckle com pouca alteração de desempenho, apresentando desempenho mínimo de 97,6%