Tecnologias da informação e métodos computacionais para gerenciamento, otimização e medicina de precisão em departamentos de imagens médicas

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Machado, Marcos Antônio Dórea lattes
Orientador(a): Martins Netto, Eduardo lattes
Banca de defesa: Eduardo, Martins Netto lattes, Vieira, Lucas de Oliveira lattes, Lalic, Susana Souza lattes, Mourato, Felipe Alves Mourato lattes, Silva, Ana Maria Marques da
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal da Bahia
Programa de Pós-Graduação: Pós-Graduação em Medicina e Saúde (PPGMS) 
Departamento: Faculdade de Medicina da Bahia
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufba.br/handle/ri/36841
Resumo: A área da saúde demanda por tecnologias da informação e métodos computacionais para melhorar a produtividade dos serviços e oferecer assistência personalizada aos pacientes. Este trabalho buscou desenvolver e explorar sistemas e métodos computacionais para implementar melhorarias no gerenciamento, otimizar os exames, e acessar novos biomarcadores e assinaturas com inteligência artificial para apoio à decisão. Foram desenvolvidos e implementados softwares com o conceito Workflow Based Approach (WBA) e métodos computacionais escritos em linguagem Python para melhorar a gestão e otimizar os protocolos de exames. Um workflow para acesso a novos biomarcadores e assinaturas IA foi desenvolvido e validado em pacientes com CT de COVID-19, 18F-FDG-PET/CT de câncer de colo do útero e 18F-FDG-PET/CT de linfoma Hodgkin. O workflow demonstrou-se válido em análises de robustez: repetitividade (erro < 5%), reprodutibilidade (coeficiente de correlação intraclasse, ICC > 90%) e correlação clínica (p < 0,05). Os modelos preditivos para 18F-FDG-PET/CT de câncer de colo do útero e 18F-FDG-PET/CT de linfoma Hodgkin apresentaram desempenho geral de AUC=0,74 e AUC=0,96, respectivamente. Um novo software que utiliza métodos de IA para apoio ao diagnóstico da COVID-19 em CT de tórax de pacientes com pneumonia foi disponibilizado e validado em um PACS/Viewer. Sem apoio do software, os médicos tiveram desempenho médio de 83,4% de sensibilidade, e 64,3% de especificidade. Com o apoio do software, o desempenho melhorou para 87,1% de sensibilidade, e 91,1% de especificidade. Adicionalmente, o software melhorou a concordância entre observadores, de moderado para substancial, em uma escala construída a partir do coeficiente de concordância Cohen’s Kappa.