Sintonia ótima de controladores MPC considerando incertezas de modelagem

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Nery Júnior, Gesner Andrade
Orientador(a): Kalid, Ricardo de Araújo
Banca de defesa: Kalid, Ricardo de Araújo, Martins, Márcio André Fernandes, Santos, Tito Luís Maia
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal da Bahia. Escola Politécnica
Programa de Pós-Graduação: em Engenharia Industrial
Departamento: Não Informado pela instituição
País: brasil
Palavras-chave em Português:
Link de acesso: http://repositorio.ufba.br/ri/handle/ri/19395
Resumo: Os métodos heurísticos de sintonia de controladores preditivos se mostram muito específicos, tanto em relação ao tipo de controlador, como ao tipo de sistema a ser controlado e, algumas vezes, não refletem com o desempenho ou a robustez desejados. Além disso, esses métodos não consideram a incerteza das medidas ou dos modelos, sendo que frequentemente a sintonia é feita na base da experiência do engenheiro, ou ainda, na falta desta, por tentativa e erro. Por outro lado, os métodos de sintonia ótima possuem a vantagem de serem bastante flexíveis, podendo ser utilizados para uma ampla gama de tipos de controladores e sistemas, e as sintonias resultantes da aplicação de tais métodos atendem o desempenho demandado pelo usuário, de acordo com o critério de desempenho ou função-objetivo previamente escolhidos, desde que sejam factíveis. O objetivo deste trabalho é desenvolver uma metodologia para a sintonia ótima de controladores preditivos multivariáveis, considerando a incerteza de modelagem nos parâmetros do modelo da planta. Uma vez que a formulação do problema de sintonia ótima resulta em uma programação mista-inteira não-linear, um algoritmo de otimização meta-heurístico, baseado na técnica de otimização por enxame de partículas, é utilizado para solucionar o problema proposto. Como forma de alcançar um controle também robusto às incertezas de modelagem, o método inclui na sua formulação a identificação do cenário do pior caso de controle, determinado no domínio da incerteza dos parâmetros do modelo, baseado no Índice de Resilência de Morari e no Número Condicional. Estudos de caso típicos da indústria de processos são realizados e as funções de densidade de probabilidade das funções-objetivo são analisadas, evidenciando o bom desempenho e robustez das sintonias propostas