Detalhes bibliográficos
Ano de defesa: |
2024 |
Autor(a) principal: |
Corrêa, Stéfano Praxedes
 |
Orientador(a): |
Simonelli, George
 |
Banca de defesa: |
Simonelli, George
,
Santos, Luiz Carlos Lobato dos
,
Santos, João Paulo Lobo dos
,
Pereira, Kleberson Ricardo de Oliveira
 |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal da Bahia
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia Quimica (PPEQ)
|
Departamento: |
Escola Politécnica
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufba.br/handle/ri/39544
|
Resumo: |
A deposição de parafinas é um problema recorrente na indústria petrolífera e que tem ganhado cada vez mais relevância devido ao aumento da produção offshore em águas profundas. Portanto, vários estudos foram realizados com o objetivo de compreender melhor tal fenômeno, além de fornecer estimativas da temperatura de desaparecimento da parafina (WDT), que representa o verdadeiro ponto de equilíbrio sólido-líquido. Informações como estas podem ser úteis para apoiar a tomada de decisão a respeito de intervenções em dutos e unidades de produção. No entanto, o estudo da deposição de parafinas é fortemente dependente da realização de experimentos, que geralmente são onerosos e podem tornar este tipo de análise inviável. Foi desenvolvido um modelo generalista a partir de técnica de machine learning para prever esse fenômeno. Nesse estudo, uma rede neural artificial (RNA) foi desenvolvida a fim de testar se há um modelo capaz de prever a WDT a partir da pressão e da massa molar do óleo cru como variáveis de entrada com auxílio da ferramenta MATLAB®. A RNA foi treinada utilizando diferentes arquiteturas a fim de otimiza-la em relação ao número de neurônios na camada escondida, sendo testado de 1 a 10. Resultados mostraram que a arquitetura com 3 neurônios na camada escondida foi capaz de prever a temperatura de desaparecimento da parafina com erro quadrático médio (MSE) abaixo de 1% e o coeficiente de correlação (R2) de 0,94. Os resultados obtidos mostraram que a rede neural artificial proposta é generalista e capaz de prever o sistema de forma precisa, sem a interferência de fenômenos de overfitting e underfitting. Os dados obtidos possibilitaram a realização da análise de sensibilidade, na qual a pressão foi a variável independente mais determinante no processo, para as condições analisadas. |