Reconhecimento de padrões e tipificação de perfis de consumo: contribuições para a melhoria da gestão na distribuição de energia elétrica

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Ferreira, Adonias Magdiel Silva
Orientador(a): Fontes, Cristiano Hora de Oliveira
Banca de defesa: Costa, Caiuby Alves da, Barbosa, Daniel, Silva, Kleber Freire da, Vargas, José Viriato Coelho
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal da Bahia. Escola Politécnica
Programa de Pós-Graduação: Engenharia Industrial
Departamento: Não Informado pela instituição
País: brasil
Palavras-chave em Português:
Link de acesso: http://repositorio.ufba.br/ri/handle/ri/18112
Resumo: Os consumidores residenciais apresentam uma diversidade de hábitos no uso da energia elétrica e um dos maiores desafios é o de prever a demanda a fim de equalizar a oferta com o consumo. Neste sentido, o desenvolvimento de métodos de agrupamento baseados no reconhecimento de padrões de consumo é de fundamental importância no gerenciamento da eficiência do setor elétrico. O objetivo deste trabalho é propor um método constituído de dois algoritmos: um aplicável a séries temporais univariadas e outro aplicável a séries temporais multivariadas, ambos desenvolvidos para o reconhecimento de padrões de séries temporais com o mesmo número de pontos amostrados e para o mesmo período de observação. Os dados estão relacionados aos programas de eficiência energética implementados por duas empresas distribuidoras de energia elétrica, e em ambos os casos, a substituição de refrigeradores se referiu às residências de consumidores de baixa renda das distribuidoras. Os dados foram coletados diretamente dos refrigeradores das unidades consumidoras antes (caso I) e depois (caso II) da substituição dos equipamentos. Refrigeradores novos foram doados às unidades consumidoras em substituição aos equipamentos antigos com menores recursos tecnológicos e prazos de vida útil esgotados. Dentre as opções indicadas pelo Protocolo Internacional para Medição e Verificação de Performance (PIMVP), este trabalho se enquadra na Opção B. A coleta de dados teve como alvo as medições das grandezas da potência elétrica e temperatura associadas aos refrigeradores, e respectivamente, os sistemas de medição SAGA 2000 e Termohigrômetro Extech RHT 10 foram utilizados nos períodos antes e após substituição. O algoritmo FCM (Fuzzy C-Means) foi utilizado como referência comparativa tanto para a versão univariada quanto para a versão multivariada, sendo que, para a versão multivariada, foi adotada uma versão modificada do FCM baseada em uma métrica de similaridade que utiliza componentes principais (Similarity Principal Componente Analysis – SPCA). Na versão univariada, antes das substituições (caso I), o método proposto e o FCM tiveram, respectivamente, um índice global de silhueta (medida da qualidade de agrupamento) de 0,28 e 0,25. Após as substituições (caso II) dos refrigeradores, ambos métodos reconheceram a existência de apenas um grupo e padrões semelhantes. Na versão multivariada, no caso I, o método proposto teve o índice global de silhueta de 0,19, e no caso II, o índice global de silhueta foi de 0,46. Os índices obtidos pelo método FCM no caso I e no caso II, respectivamente, foram de -0,12 e 0,21. O método proposto apresentou uma identificação de uma maior diversidade de padrões; o reconhecimento da sazonalidade através de uma abordagem multicritérios; o melhoramento da tomada de decisão através de uma melhor classificação dos perfis de consumidores heterogêneos; e a definição do número de clusters através de uma abordagem baseada em grupos semi-hierárquica, revelando-se assim como uma importante contribuição para o estado-da-arte. A partir dos desafios e resultados obtidos neste trabalho, são sugeridas possibilidades de trabalhos futuros que incorporem análises para a previsão de diferentes dinâmicas temporais, período de amostragem e incerteza de medição.