Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Ribeiro, Karine do Prado |
Orientador(a): |
Fontes, Cristiano Hora |
Banca de defesa: |
Esquerre, Vitaly Félix Rodríguez,
Simas Filho, Eduardo Furtado de |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Escola Politécnica
|
Programa de Pós-Graduação: |
em Engenharia Industrial
|
Departamento: |
Não Informado pela instituição
|
País: |
brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://repositorio.ufba.br/ri/handle/ri/28749
|
Resumo: |
A análise de agrupamentos e o reconhecimento de padrões a partir de dados de processo representa uma alternativa para a extração de conhecimento útil e, entre outros, para a detecção e diagnóstico de falhas (FDD, Fault Detection and Diagnosis). De forma inovadora, este trabalho apresenta uma metodologia voltada ao reconhecimento de padrões em séries temporais multivariadas que consiste na adaptação e aplicação de Algoritmos Genéticos (GA, Genetic Algorithm) em um método clássico de agrupamento não hierárquico baseado em otimização (FCM, fuzzy c-means). A análise de similaridade entre as séries, coletadas em diferentes períodos de operação (doravante aqui denominados de objetos), é realizada com base em duas métricas das quais uma compara a direção dos componentes principais entre os objetos (SPCA, ou PCA Similarity factor) e a outra compara os seus respectivos valores médios ou níveis de operação (AED, Average-based Euclidean Distance). Dois estudos de caso foram analisados, ambos inspirados em problemas de detecção de falhas em processos de produção. A primeira aplicação compreendeu um processo industrial real relacionado à operação de partida de uma turbina a gás de escala comercial (Unidade Termoelétrica Rômulo Almeida, Petrobras). O segundo estudo de caso envolveu o reconhecimento de padrões em eventos normais e de falha a partir de séries multivariadas extraídas de uma unidade virtual de referência utilizada na análise de estratégias de controle e FDD (Tennessee Eastman Process – TEP). Este trabalho evidencia as potencialidades de aplicação de um método heurístico de otimização em relação à abordagem de otimização clássica para a resolução de um problema de agrupamento envolvendo séries multivariadas. O melhor desempenho da estratégia heurística (GA) se verifica principalmente através da melhor exploração da região de busca e da obtenção de um melhor mínimo local do ponto de vista da qualidade da classificação. Os resultados obtidos mostram que o FCM baseado em GA apresentou um percentual de acerto de classificação igual ou superior ao método FCM baseado em otimização clássica, o que comprova a viabilidade da alternativa proposta para a codificação dos genes e a eficácia da abordagem heurística em problemas que sugerem a existência de múltiplos mínimos locais. A estratégia proposta para a aplicação de algoritmos genéticos no agrupamento e reconhecimento de padrões em séries multivariadas representa uma alternativa potencial para a extração de conhecimento de um processo de produção, para o apoio à tomada de decisão na gestão operacional e para implementação de estratégias de controle ótimo através dos padrões reconhecidos. |