Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Azevedo, Jaqueline |
Orientador(a): |
Mandolesi, André Luís |
Banca de defesa: |
Silva, Rita de Cássia,
Santos, Evandro Carlos,
Mandolesi, André Luís |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Instituto de Matemática . Departamento de Matemática
|
Programa de Pós-Graduação: |
Mestrado em Matemática
|
Departamento: |
Não Informado pela instituição
|
País: |
brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://repositorio.ufba.br/ri/handle/ri/19412
|
Resumo: |
Considerando uma Álgebra de Lie (g,[.,.]) com estrutura complexa J, é possível definir em g um novo colchete Lie [*]J, de modo que se pode mostrar que os subespaços g (1,0) e g(0,1) são subálgebras de Lie isomorfas a (g,[*]J). Para tanto, neste trabalho serão consideradas apenas estruturas complexas integráveis Será mostrado também, que no caso em que essas subálgebras forem nilpotentes, então (g,[.,.]) será solúvel. Nesse sentido, será feita uma caracterização da Álgebras de Lie (g,[*]J) com estrutura complexa s-passos nilpotente, afim de estudar o comportamento do colchete de Lie original [.,.], permitindo assim a construção de exemplos de Álgebras de Lie de dim=6. Também, será mencionado o conceito de estrutura hipercomplexa, demonstrado alguns resultados algébricos envolvendo tal estrutura e exemplificando em casos de Álgebras de Lie de dim=8, afim de comentar sua importância em outros contextos matemáticos. |