Estruturas complexas nilpotentes em álgebras de lie solúveis

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Azevedo, Jaqueline
Orientador(a): Mandolesi, André Luís
Banca de defesa: Silva, Rita de Cássia, Santos, Evandro Carlos, Mandolesi, André Luís
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Instituto de Matemática . Departamento de Matemática
Programa de Pós-Graduação: Mestrado em Matemática
Departamento: Não Informado pela instituição
País: brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufba.br/ri/handle/ri/19412
Resumo: Considerando uma Álgebra de Lie (g,[.,.]) com estrutura complexa J, é possível definir em g um novo colchete Lie [*]J, de modo que se pode mostrar que os subespaços g (1,0) e g(0,1) são subálgebras de Lie isomorfas a (g,[*]J). Para tanto, neste trabalho serão consideradas apenas estruturas complexas integráveis Será mostrado também, que no caso em que essas subálgebras forem nilpotentes, então (g,[.,.]) será solúvel. Nesse sentido, será feita uma caracterização da Álgebras de Lie (g,[*]J) com estrutura complexa s-passos nilpotente, afim de estudar o comportamento do colchete de Lie original [.,.], permitindo assim a construção de exemplos de Álgebras de Lie de dim=6. Também, será mencionado o conceito de estrutura hipercomplexa, demonstrado alguns resultados algébricos envolvendo tal estrutura e exemplificando em casos de Álgebras de Lie de dim=8, afim de comentar sua importância em outros contextos matemáticos.