Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Nery, Genildo de Jesus |
Orientador(a): |
Sica, Carmela |
Banca de defesa: |
Sica, Carmela,
Uribe, Oscar Eduardo Ocampo,
Souza, Manuela da Silva |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Instituto de Matemática/Departamento de Matemática
|
Programa de Pós-Graduação: |
Mestrado em Matemática
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Link de acesso: |
http://repositorio.ufba.br/ri/handle/ri/23540
|
Resumo: |
A presente dissertação é baseada no artigo Almost Engel Finite and Pro nite Groups de E.I.Khukhro e P.Shumyatsky [9]. Seja g elemento de um grupo G e n um número inteiro positivo. Neste trabalho provamos resultados em termos dos subgrupos En(g), os quais, são gerados pelos comutadores [x; g; : : : ; g], para cada x 2 G, onde g aparece n vezes no comutador. Denotamos por E(g) a interseção dos subgrupos En(g), com n variando no conjunto dos números naturais. Primeiro, provamos que, se G é um grupo nito e existe um inteiro positivo m tal que jE(g)j m para cada g 2 G, então a ordem do residual nilpotente 1(G) é limitado em termos de m. Por m, mostramos que, se G é um grupo pro nito tal que para cada g 2 G existe um inteiro positivo n = n(g) onde o subgrupo En(g) é nito, então G tem um subgrupo normal N nito tal que o quociente G=N é localmente nilpotente |