Sistema de Recomendação baseado em conteúdo textual: avaliação e comparação

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Silva, Rafael Glauber Nascimento e
Orientador(a): Loula, Angelo Conrado
Banca de defesa: Rocha Júnior, João, Silva, Leandro Nunes de Castro
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Instituto de Matemática. Departamento de ciência da Computação
Programa de Pós-Graduação: Mestrado Multiinstitucional em Ciência da Computação
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufba.br/ri/handle/ri/19281
Resumo: Sistemas de Recomendação sugerem itens de interesse explorando as preferências dos usuários ajudando-os contra o problema da sobrecarga de informações. Primeiramente estes sistemas eram construídos, exclusivamente, através de técnicas com origem nas áreas de Recuperação de Informação e Aprendizado de Máquina. Porém, desde o início da década de 90 a abordagem conhecida como Filtragem Colaborativa, que não explora qualquer tipo de conteúdo disponível dos itens para realizar sua tarefa, passou a ser a mais utilizada como solução para estes sistemas. Pesquisas como as de Shardanand & Maes (1995); Das et al. (2007); Konstan & Riedl (2012) justificam essa preferência por conta de deficiências preexistentes nos algoritmos de filtragem por conteúdo dos itens. Entretanto, nestas pesquisas não são evidenciadas essas deficiências ou mesmo as diferenças e semelhanças das recomendações geradas pelos algoritmos dessas duas abordagens levando esta discussão ao senso comum. Neste trabalho é proposta uma metodologia para comparação de algoritmos de recomendação que vai além da precisão das previsões. Para demonstrar essa metodologia a aplicamos na comparação das abordagens de Filtragem Baseada em Conteúdo Textual e a Filtragem Colaborativa. Nossos resultados demonstram que algoritmos dessas duas abordagens não só diferem em diversas dimensões em um teste de sistema, como também apresentam características que sugerem grande complementariedade.