Análise do desempenho de rede neural convolucional na classificação automática de imagens tomográficas de queratocistos odontogênicos e ameloblastomas

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Bispo, Mayara Simões
Orientador(a): Rebello, Iêda Margarida Crusoé Rocha
Banca de defesa: Rebello, Iêda Margarida Crusoé Rocha, Campos, Paulo Sérgio Flores, Martins, Gabriela Botelho
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Faculdade de Odontologia
Programa de Pós-Graduação: Programa de Pós-Graduação em Odontologia e Saúde
Departamento: Não Informado pela instituição
País: brasil
Palavras-chave em Português:
Link de acesso: http://repositorio.ufba.br/ri/handle/ri/33688
Resumo: Introdução: Dentre as várias entidades patológicas do grupo lesões intraósseas odontogênicas benignas, confere-se destaque ao queratocisto odontogênico e ao ameloblastoma em razão de suas altas taxas de prevalência e similaridade nas características radiográficas, que tornam desafiador o diagnóstico diferencial entre elas. Nesse contexto, as Redes Neurais Convolucionais (Convolutional Neural Networks - CNNs), uma das vertentes da Inteligência Artificial, podem sugerir diagnóstico de lesões com alta precisão e rapidez ao aprender com padrões reconhecidos nas imagens de maneira supervisionada. Objetivo: analisar o desempenho da classificação automática de queratocistos odontogênicos e ameloblastomas, a partir de imagens de Tomografia Computadorizada de Multidetectores (TCMD) através do uso de um modelo de CNN. Metodologia: Para a construção do dataset foram selecionados exames por TCMD de pacientes portadores de ameloblastomas convencionais (n=22) e queratocistos odontogênicos (n=18) com laudo anatomopatológico conclusivo. As imagens tomográficas axiais foram segmentadas manualmente por um examinador experiente e submetidas a algoritmos de incremento de base, totalizando 2000 imagens. Para estimativa de acurácia do modelo CNN GooglLe Inception v.3 como classificador binário foi utilizado o método de validação cruzada k-fold, com k = 5. Resultados: Os valores de acurácia e desvio padrão (%) da validação cruzada para as cinco iterações realizadas foram de 90,16±0,95, 91,37±0,57, 91,62±0,19, 92,48±0,16 e 91,21±0,87, respectivamente. Conclusão: O modelo de CNN GoogLe Inception v.3 demonstrou resultados positivos para classificação de imagens tomográficas de queratocistos odontogênicos e ameloblastomas.