Metodologia para classificação de padrões de consumo de memória no linux baseada em mapas auto-organizáveis

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: Lin, Maurício Tia Ni Gong
Outros Autores: http://lattes.cnpq.br/2015638290124067
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Amazonas
Instituto de Computação
BR
UFAM
Programa de Pós-graduação em Informática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://tede.ufam.edu.br/handle/tede/2916
Resumo: A evolução do sistema operacional Linux possibilitou que o mesmo se tornasse o principal concorrente dos sistemas operacionais do mercado como o Windows da Microsoft e Solaris da Sun. Apesar de diversas funcionalidades e melhorias desenvolvidas no Linux, o problema relacionado à falta de memória e o mecanismo existente de solucioná-lo, chamado de OOM Killer, ainda é motivo de longas discussões na comunidade do kernel Linux. A carência de pesquisas científicas relacionada ao algoritmo de seleção de processos do OOM Killer leva esta dissertação a propor um mecanismo de identificação e classificação de padrões de consumo de memória no Linux baseada no modelo de rede neural auto-organizável. A ferramenta desenvolvida nesta dissertação mostra a possibilidade de utilizar Mapas Auto-Organizáveis para classificar e identificar os padrões de consumo de memória de determinadas aplicações inseridas em contextos de casos de uso.