Metodologia para classificação de padrões de consumo de memória no linux baseada em mapas auto-organizáveis
Ano de defesa: | 2006 |
---|---|
Autor(a) principal: | |
Outros Autores: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Amazonas
Instituto de Computação BR UFAM Programa de Pós-graduação em Informática |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://tede.ufam.edu.br/handle/tede/2916 |
Resumo: | A evolução do sistema operacional Linux possibilitou que o mesmo se tornasse o principal concorrente dos sistemas operacionais do mercado como o Windows da Microsoft e Solaris da Sun. Apesar de diversas funcionalidades e melhorias desenvolvidas no Linux, o problema relacionado à falta de memória e o mecanismo existente de solucioná-lo, chamado de OOM Killer, ainda é motivo de longas discussões na comunidade do kernel Linux. A carência de pesquisas científicas relacionada ao algoritmo de seleção de processos do OOM Killer leva esta dissertação a propor um mecanismo de identificação e classificação de padrões de consumo de memória no Linux baseada no modelo de rede neural auto-organizável. A ferramenta desenvolvida nesta dissertação mostra a possibilidade de utilizar Mapas Auto-Organizáveis para classificar e identificar os padrões de consumo de memória de determinadas aplicações inseridas em contextos de casos de uso. |