Um teorema de sobrejetividade para Operadores Monótonos Maximais

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Brasil, Ezequiel dos Santos
Outros Autores: http://lattes.cnpq.br/2763998001372645
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Amazonas
Instituto de Ciências Exatas
Brasil
UFAM
Programa de Pós-graduação em Matemática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://tede.ufam.edu.br/handle/tede/5616
Resumo: Neste trabalho, foi desenvolvido um Teorema de Sobrejetividade para operadores monótonos maximais baseado nas propriedades da função Fitzpatrick, bem como as aplicações decorrentes do respectivo Teorema. Também foi abordada a de nição da função Fitzpatrick, cujas propriedades foram evidenciadas, especialmente, por meio de exemplos. Continuando, foi provado um teorema que garante a maximalidade do subdiferencial de uma função convexa, própria e semicontínua inferiormente. Sobretudo, foram abordados alguns elementos da análise convexa e, principalmente, da teoria de conjugação na análise convexa que fundamentaram os resultados apresentados neste trabalho.