Casamento de esquemas de banco de dados aplicando aprendizado ativo

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Rodrigues, Diego de Azevedo
Outros Autores: http://lattes.cnpq.br/1094681264347962
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Amazonas
Instituto de Computação
Brasil
UFAM
Programa de Pós-graduação em Informática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://tede.ufam.edu.br/handle/tede/4146
Resumo: Dados dois esquemas de bancos de dados pertencentes ao mesmo domíınio, o problema de Casamento de Esquemas consiste em encontrar pares de elementos desses esquemas que possuam a mesma semântica para aquele domínio. Tradicionalmente, tal tarefa era realizada manualmente por um especialista, tornando-a custosa e cansativa pois, este deveria conhecer bem os esquemas e o domíınio em que estes estavam inseridos. Atualmente, esse processo é assistido por métodos semi-automáticos de casamento de esquemas. Os métodos atuais utilizam diversas heurísticas para gerar os casamentos e muitos deles compartilham uma modelagem em comum: constroem uma matriz de similaridade entre os elementos a partir de funções chamadas matchers e, baseados nos valores dessa matriz, decidem segundo algum critério quais os casamentos válidos. Esta dissertação apresenta um método baseado em aprendizado ativo que utiliza a matriz de similaridade gerada pelos matchers e um algoritmo de aprendizagem de máquina, além de intervenções de um especialista, para gerar os casamentos. O método apresentado se diferencia dos outros por não possuir uma heurística fixa e por utilizar a experiência do especialista apenas quando necessário. Em nossos experimentos, avaliamos o método proposto contra um baseline em dois datasets: o primeiro que foi o mesmo utilizado pelo baseline e o segundo contendo esquemas propostos em um benchmark para integração de esquemas. Mostramos que o baseline alcança bons resultados no dataset em que foi originalmente testado, mas que sua estratégia fixa não é tão efetiva para outros esquemas. Por outro lado, o método baseado em aprendizado ativo que propomos se mostra consistente em ambos os datasets, alcançando, em média, um valor de medida-F igual a 0, 64.