Detecção de pontos fiduciais em faces humanas utilizando máquina de vetores suporte

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Silva, Luiz Eduardo Sales e
Outros Autores: http://lattes.cnpq.br/6050147076673114
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Amazonas
Faculdade de Tecnologia
Brasil
UFAM
Programa de Pós-graduação em Engenharia Elétrica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://tede.ufam.edu.br/handle/tede/4742
Resumo: Atualmente, o problema da detenção de pontos fiduciais em faces humanas vem recebendo crescente atenção da comunidade científica. Recentemente, podemos encontrar na literatura alguns sistemas desenvolvidos com o objetivo de realizar a detecçiia de pontos fiduciais. Alguns destes representantes utilizam clasSifieadows SVM. Um dos problemas enfrentados por essa abordagem reside no fato de que o desempenho das clasSificadores SVM é extremamente sensível à mudança de seus parâmetros. lista é uma dificuldade que não é trivial de se explorar. Nesta dissertar ção, propomos um sistema de detecção de pontos fiduciais, que utiliza clasSificadores SVM, com o objetivo de investigar o desempenho dos classificadores para um con-junto de parâmetros pré-definidos. Com esta investiwida, pretendemos descrever o comportamento do sistema para o conjunto de parâmetros e determinar qual é a =binação de parâmetros, e de seus valores, que produz o melhor desempenho pos-sível para o sistema ramo um todo. O sistema proposta é complexo devido a. grande quantidade de etapas envolvidas. A avaliada de desempenho do sistema proposto foi realizada. para. onze pontas Aduri:ais da. face humana para. duas bases de dados de imagens (BiolD e Fim). O resultados demonstram que o desempenho do sistema. proposto é incrementado quando utilizamos a abordagem adotada. O desempenho do sistema é satisfatório quando comparado com os de sistemas similares.