Comparação do desempenho do classificador de novidades com o classificador do vizinho mais próximo no reconhecimento facial
Ano de defesa: | 2014 |
---|---|
Autor(a) principal: | |
Outros Autores: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Amazonas
Faculdade de Tecnologia BR UFAM Programa de Pós-graduação em Engenharia Elétrica |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://tede.ufam.edu.br/handle/tede/3297 |
Resumo: | Este trabalho propõe a utilização do classificador de novidades para reconhecimento de faces, o qual é baseado no filtro de novidades, proposto por Kohonen. Para avaliar o desempenho do novo classificador é feita uma comparação com o classificador do vizinho mais próximo, usando a métrica da distância euclidiana. A base de dados utilizada para essa comparação foi a base ORL. A informação da face é extraída utilizando os métodos PCA, 2DPCA e (2D)2PCA, sem usar qualquer tipo de pré-processamento (fotométrico ou geométrico). Os seguintes resultados são apresentados no modo de identificação: taxa de reconhecimento rank 1 e as curvas CMC, no modo verificação: as taxas de correta aceitação (CAR), de erro equivalente (EER), as curvas ROC e área sob a curva ROC (AUC). Os resultados obtidos mostraram que o classificador proposto tem um desempenho melhor do que o desempenho do vizinho mais próximo e do que outros classificadores anteriormente publicados usando a mesma base, quando a estratégia de validação cruzada 10-fold é usada, com essa estratégia a taxa de reconhecimento obtida foi de 100% |