Indoor Positioning System using Dynamic Model Estimation

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Assayag, Yuri Freitas
Outros Autores: http://lattes.cnpq.br/6409128880667607, https://orcid.org/0000-0002-1612-306X
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal do Amazonas
Instituto de Computação
Brasil
UFAM
Programa de Pós-graduação em Informática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://tede.ufam.edu.br/handle/tede/8241
Resumo: Indoor Positioning Systems (IPSs) are used to locate mobile devices in indoor environments. Model-based IPSs have the advantage of not having an exhausting training and signal characterization of the environment, as required by the fingerprint technique. However, most model-based IPSs are done using static model parameters, treating the whole scenario as having a uniform signal propagation. This might work for most small scale experiments, but not for larger scenarios. In this work, we propose PoDME (Positioning using Dynamic Model Estimation), a model-based IPS that uses dynamic parameters that are estimated based on the location the signal was sent. More specifically, we use the set of anchor nodes that received the signal sent by the mobile node and their signal strengths, to estimate the best local values for the propagation model parameters. Also, since our solution depends highly on the selected anchor nodes to use on the position computation, we propose a novel method for choosing the three best anchor nodes. Our method is based on several data analyses executed on a large-scale, Bluetooth-based, real-world experiment and it chooses not only the nearest anchor but also the ones that benefit our least-square-based position computation. Our solution achieves a position estimation error of 3 m, which is 17% lower than the position estimates obtained by positioning models based on static parameters.